Carbon Dioxide Sequestration in Concrete in Different Curing Environments

by

Yoon-moon Chun, Tarun R. Naik, and Rudolph N. Kraus

Presented at the International Conference on Sustainable Construction Materials and Technologies, Coventry, UK, June 2007
Reduce, reuse, and recycle for sustainable developments.

Minimize use of manufactured materials.

Maximize environmental benefits: clean air, clean water, and resource conservation.
Carbon Dioxide (CO$_2$) Emission

• Carbon dioxide (CO$_2$) emissions are one of the most serious concerns among all greenhouse gas emissions, along with water vapor and methane.

• CO$_2$ and water vapor emissions can be affected by combustion of fuels and by respiration. Also, decaying organic matter generate CO$_2$ and methane.

• Oil- or coal-burning power plants and cement-producing industries account for a large amount of CO$_2$ emissions.
Need to Reduce CO$_2$ Emissions from Cement Clinker Production

• More efficient cement clinker production
• Reduce the production of cement clinker
 – Increased use of other cementitious materials (OCM)
 – Increased use of organic admixtures
 – Increased carbonation
CO$_2$ Sequestration

• There exists an urgent need for a reduction in CO$_2$ emissions and recycling of CO$_2$.

• An effective method for the reduction of CO$_2$ in the environment is to sequester it in lime- or cement-based (alkali-rich) products via the process of carbonation.
Carbonation of Concrete

(1) $ \text{CO}_2$ diffusion in the cement paste matrix.

(2) CO_2 dissolution in the pore solution for formation of *carbonic acid* (H_2CO_3) and reaction with calcium hydroxide:

$$\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}$$

$$[\text{Ca}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3]$$
(3) Reaction with silicates and aluminates:
- \(3\text{CaO} \cdot 2\text{SiO}_2 \cdot 3\text{H}_2\text{O} + 3\text{CO}_2 \rightarrow 3\text{CaCO}_3 + 2\text{SiO}_2 + 3\text{H}_2\text{O}\)
- \(4\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 13\text{H}_2\text{O} + 4\text{CO}_2 \rightarrow 4\text{CaCO}_3 + 2\text{Al(OH)}_3 + 10\text{H}_2\text{O}\)
Effects of Carbonation on Concrete

- Consumption of CO₂
- Pore refinement/densification due to precipitation of CaCO₃ inside the pores of the cement paste matrix
- Increase in weight
- Increase in strength
- Improved surface hardness
- Reduction in pH (reinforcing steel can become vulnerable to corrosion)
Factors Affecting Carbonation

• Pore structure
• Availability of Ca(OH)$_2$ and other products of hydration
• Moisture condition of the specimen and Curing environment
 – Relative humidity (Optimum: 50% to 70%)
 – CO$_2$ concentration
 – Temperature
• Use of mineral admixtures
Factors Affecting Carbonation (cont’d)

• Concrete with high internal moisture shows a low rate of carbonation because the diffusion of CO$_2$ becomes difficult when pores are saturated with water.

• Carbonation rate also reduces at a low internal moisture level due to insufficient water in the pores.
Mixture Designations

<table>
<thead>
<tr>
<th>Fly ash / cementitious materials (%)</th>
<th>Curing condition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moist-curing room</td>
<td>Drying room</td>
</tr>
<tr>
<td></td>
<td>100% RH & 0.15% CO₂</td>
<td>50% RH & 0.15% CO₂</td>
</tr>
<tr>
<td></td>
<td>CO₂ chamber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% RH & 5% CO₂</td>
</tr>
<tr>
<td>Fly ash / cementitious materials (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>F0-M</td>
<td>F0-D</td>
</tr>
<tr>
<td>18</td>
<td>F18-M</td>
<td>F18-D</td>
</tr>
<tr>
<td>35</td>
<td>F35-M</td>
<td>F35-D</td>
</tr>
</tbody>
</table>
Mixture Proportions and Fresh Properties of Concrete

<table>
<thead>
<tr>
<th>Mixture designation</th>
<th>F0-M</th>
<th>F0-D</th>
<th>F0-C</th>
<th>F18-M</th>
<th>F18-D</th>
<th>F18-C</th>
<th>F35-M</th>
<th>F35-D</th>
<th>F35-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement (kg/m³)</td>
<td>297</td>
<td>301</td>
<td>298</td>
<td>253</td>
<td>253</td>
<td>252</td>
<td>211</td>
<td>210</td>
<td>209</td>
</tr>
<tr>
<td>Fly ash (kg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>113</td>
<td>113</td>
<td>112</td>
</tr>
<tr>
<td>Sand (kg/m³)</td>
<td>884</td>
<td>899</td>
<td>893</td>
<td>902</td>
<td>902</td>
<td>899</td>
<td>904</td>
<td>902</td>
<td>899</td>
</tr>
<tr>
<td>Co. agg., 19-mm max. (kg/m³)</td>
<td>1040</td>
<td>1060</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1040</td>
<td>1050</td>
<td>1050</td>
<td>1040</td>
</tr>
<tr>
<td>Water (kg/m³)</td>
<td>157</td>
<td>157</td>
<td>154</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>153</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>W/Cm</td>
<td>0.53</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Slump (mm)</td>
<td>75</td>
<td>70</td>
<td>50</td>
<td>70</td>
<td>65</td>
<td>75</td>
<td>75</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Air content (%)</td>
<td>2.2</td>
<td>2.6</td>
<td>1.7</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>2380</td>
<td>2410</td>
<td>2400</td>
<td>2420</td>
<td>2420</td>
<td>2410</td>
<td>2430</td>
<td>2430</td>
<td>2420</td>
</tr>
</tbody>
</table>
Mixture Proportions

- **Class C fly ash** was used as a partial replacement of cement. For 1 kg of cement being replaced, 1.25 kg of fly ash was added.

- The concrete mixtures were **not air entrained**.
Strength and Abrasion Tests

- Compressive strength: 100 × 200 mm cylinders
- Splitting tensile strength: 100 × 200 mm cylinders
- Flexural strength: 100 × 75 × 300 mm beams
- Abrasion resistance: ASTM C 944 using 45-mm thick disks saw-cut from the top of 150 × 300 mm cylinders
Depth of Carbonation Test

- RILEM CPC-18 using split halves obtained from splitting tensile tests.
- A pH-indicator solution (1% phenolphthalein in a 70% ethyl alcohol solution) was sprayed on the fractured surface of concrete specimens.
Demolding and Curing

• Approximately 24 hours after casting, specimens were removed from molds.
• Immediately, they were put in three types of curing environment
 – Moist-curing room: 100% RH & 0.15% CO₂
 – Drying room: 50% RH & 0.15% CO₂
 – CO₂ chamber: 50% RH & 5% CO₂.
CO₂ Chamber

- CO₂ concentration: 5 ± 1.25%
- Relative humidity: 50 ± 4%
- Temperature: 21 ± 1.5°C.
- A fan was provided in the chamber to circulate the CO₂ within the chamber.
Testing for Compressive Strength
Testing for Splitting Tensile Strength
Testing for Flexural Strength
Strength

• The concrete specimens cured in the drying room developed the lowest strength. In the drying room, there was little or no gain in compressive strength after the 28-day age; and, the concrete containing 35% fly ash showed the lowest compressive strength in this environment.

• The CO$_2$ chamber was as effective as the moist-curing room in developing the compressive strength of concrete containing 0% to 35% fly ash.
Abrasion testing: using rotating cutters for six minutes under a load of 197 N
Mass Loss Due to Abrasion

• The concrete cured in the moist-curing room showed the least mass loss upon abrasion (highest abrasion resistance).
• The concrete cured in the drying room showed the highest abrasion mass-loss, which worsened with age.
• The abrasion mass-loss of the concrete cured in the CO$_2$ chamber was lower than that of the concrete cured in the drying room, but higher than that of moist-cured concrete.
Mass Loss Due to Abrasion (cont’d)

In both the moist-curing room and the CO₂ chamber, the abrasion resistance concrete improved with age.
Testing for Depth of Carbonation of Concrete

Pink: considered non-carbonated.
No discoloration: considered carbonated.
Depth of carbonation of concrete mixtures containing 35% fly ash, measured at 28 days
Depth of Carbonation

• Concrete made with or without fly ash, cured in the moist-curing room (100% RH and 0.15% CO₂) did not show carbonation at 3, 7, 28, and 91 days.

• In the drying room (50% RH and 0.15% CO₂), concrete carbonated to some extent.

• Concrete cured in the CO₂ chamber showed much higher carbonation than the concrete cured in the drying room.
CONCLUSIONS

• Compared to moist-cured concrete, the concrete cured in the CO₂ chamber showed approximately the same strength and a similar or slightly lower abrasion resistance (higher mass-loss).

• The concrete cured in the drying room without enough carbonation showed the lowest strength and least abrasion resistance (highest mass-loss).
ACKNOWLEDGEMENTS

The authors would like to thank:

• We Energies, Milwaukee, WI
• Wisconsin Public Service, Green Bay, WI
• Madison Gas and Electric, Madison, WI
• Timir Shah and other students working at UWM-CBU
Spaceship Earth – La Bella Terra

Center for By-Products Utilization
Thank you very much for your interest.
Aabhar Tamaro, Afcharisto Poly, Arigatou Gozaimasu, Dziekuje, Maraming Salamat, Merci Beaucoup, Muchas Gracias, Grazie Molte, Muito Obrigado, Salamat, Shukriya, Spasibo, Thank you, Toda Raba.