Flowable Slurry Made With Class C Fly Ash and Paper Industry Fibrous Residuals

by

Tarun R. Naik, Yoon-moon Chun, and Rudolph N. Kraus

Presented at the Ninth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Poland, May 2007
Pulp and Paper Mill Wastewater Treatment Residuals

• Solid residue removed from mill wastewater before the water is discharged or reused.
• Removed via a two-step (primary/gravity and secondary/biological).
• Usually, dewatered before disposal or beneficial use.
Objectives

• Establish technical and performance benefits of using pulp and paper mill residual solids in flowable slurry.

• Improve setting & hardening and long-term strength of flowable slurry.

• Establish optimum mixture proportions for flowable slurry containing residual solids.
Characterization of the Residuals

• Residual solids from two sources were selected.
 – WR: Screening rejects from a pulp mill
 – C1: Waste-water treatment residual from a pulp/paper mill

• Physical and chemical properties determined.
As-received fibrous residual WR
As-received fibrous residual C1
No Pretreatment of Residuals

• The fibrous residuals were used as-received and not “re-pulped.”
Flowable Slurry Laboratory Mixtures

Mixture proportions were established through preliminary mixing and testing of coal ash slurry mixtures containing various amounts of:

- Cement
- Class C fly ash
- Water
- Fibrous residuals
Water, fibrous residual C1, cement, and fly ash in the mixer
Casting cylindrical specimens for compressive strength
Mixture Proportions and Fresh CLSM Properties

<table>
<thead>
<tr>
<th>Mixture designation</th>
<th>FA-Ref</th>
<th>FA-Ref-2</th>
<th>FA-WR</th>
<th>FA-WR-2</th>
<th>FA-C1</th>
<th>FA-C1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrous residual</td>
<td>(None)</td>
<td>(None)</td>
<td>WR</td>
<td>WR</td>
<td>C1</td>
<td>C1</td>
</tr>
<tr>
<td>Cement (kg/m³)</td>
<td>75</td>
<td>179</td>
<td>25</td>
<td>27</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>Class C fly ash (kg/m³)</td>
<td>1213</td>
<td>1612</td>
<td>811</td>
<td>877</td>
<td>692</td>
<td>923</td>
</tr>
<tr>
<td>Sand, SSD (kg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fibrous residual (kg/m³)</td>
<td>0</td>
<td>0</td>
<td>167</td>
<td>181</td>
<td>285</td>
<td>190</td>
</tr>
<tr>
<td>Water (kg/m³)</td>
<td>496</td>
<td>645</td>
<td>522</td>
<td>456</td>
<td>445</td>
<td>444</td>
</tr>
<tr>
<td>W/Cm</td>
<td>0.39</td>
<td>0.36</td>
<td>0.62</td>
<td>0.50</td>
<td>0.62</td>
<td>0.47</td>
</tr>
<tr>
<td>Flow (mm)</td>
<td>335</td>
<td>415</td>
<td>380</td>
<td>230</td>
<td>235</td>
<td>275</td>
</tr>
<tr>
<td>Air content (%)</td>
<td>0.8</td>
<td>1.2</td>
<td>n. a.</td>
<td>3.1</td>
<td>3.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>1780</td>
<td>2440</td>
<td>1530</td>
<td>1540</td>
<td>1440</td>
<td>1590</td>
</tr>
</tbody>
</table>
Mixture Proportions and Fresh Properties of Ash Slurry

• The ash slurry mixtures made with fibrous residuals contained a lower amount of cementitious materials (cement + fly ash) than the reference ash slurry mixtures made without fibrous residuals.

• This was mainly because fibrous residuals are lightweight and increased the volume of CLSM produced.
Mixture Proportions and Fresh Properties of Ash Slurry (cont’d)

• The fly ash slurry mixtures FA-Ref and FA-Ref-2 made without fibrous residuals were not easy to handle - fast-setting and agglomeration while mixing.

• Fly ash slurries containing fibrous residuals were easy to produce and handle.
Mixture Proportions and Fresh Properties of Ash Slurry (cont’d)

- The fly ash slurry mixtures made with fibrous residuals remained workable while specimens were being cast.
Ball-Drop Diameter of CLSM

- To be suitable for load application, the ball-drop diameter on CLSM (ASTM D 6024) should be 75 mm (3 in.) or less [ACI-229 1999].
ASTM D 6024 Ball-drop test

Center for By-Products Utilization
ASTM D 6024 Ball-drop impressions

Center for By-Products Utilization
Ball-drop diameter on fly ash flowable slurry
Compressive Strength of CLSM

Unconfined compressive strength of CLSM (ASTM D 4832) should be [ACI-229 1999]:

- 0.35 to 0.7 MPa (50 to 100 psi) for backfills to allow for manual excavation
- \(\leq 2.1 \) MPa (300 psi) to allow for excavation by using a backhoe
- 2.8 to 8.3 MPa (400 to 1200 psi) for pavement bases.
Compressive Strength of Fly Ash Flowable Slurry (MPa)

<table>
<thead>
<tr>
<th>Age (days)</th>
<th>FA-Ref</th>
<th>FA-Ref-2</th>
<th>FA-WR</th>
<th>FA-WR-2</th>
<th>FA-C1</th>
<th>FA-C1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.45</td>
<td>0.46</td>
<td>0.16</td>
<td>0.45</td>
<td>0.10</td>
<td>0.68</td>
</tr>
<tr>
<td>7</td>
<td>0.48</td>
<td>0.43</td>
<td>0.20</td>
<td>0.60</td>
<td>0.10</td>
<td>0.73</td>
</tr>
<tr>
<td>28</td>
<td>0.63</td>
<td>0.66</td>
<td>0.26</td>
<td>0.66</td>
<td>0.12</td>
<td>0.90</td>
</tr>
<tr>
<td>56</td>
<td>6.52</td>
<td>8.52</td>
<td>0.28</td>
<td>0.89</td>
<td>0.13</td>
<td>0.88</td>
</tr>
<tr>
<td>91</td>
<td>8.82</td>
<td>8.87</td>
<td>0.32</td>
<td>0.99</td>
<td>0.14</td>
<td>0.91</td>
</tr>
<tr>
<td>182</td>
<td>9.35</td>
<td>13.84</td>
<td>0.71</td>
<td>1.14</td>
<td>0.55</td>
<td>n. a.</td>
</tr>
</tbody>
</table>
Compressive Strength of Ash Slurry

- The fly ash slurry mixtures containing fibrous residuals (Mixtures FA-WR, FA-WR-2, FA-C1, and FA-C1-2) maintained a controlled low long-term strength (0.14 to 0.99 MPa at 91 days and 0.55 to 1.44 MPa at 182 days).
Sealing Test Specimen in Preparation for Hydraulic-Conductivity Test

Center for By-Products Utilization
Hydraulic Conductivity (Water Permeability)

The hydraulic conductivity of hardened flowable slurry was determined in accordance with ASTM D 5084 using falling head and constant tailwater elevation.
Hydraulic conductivity of fly ash flowable slurry
CONCLUSIONS

• Fibrous residuals improved workability of fly ash slurry. → Easier (less time-consuming) to thoroughly mix the ingredients.

• Fibrous residuals prevented rapid setting of the fly ash slurry mixtures made with Class C fly ash and kept the fresh ash slurry mixtures workable while they were being placed.
• Fibrous residuals helped the fly ash and sand slurry mixtures to set at an early age and maintain a low long-term strength, allowing for future excavation.

• Use of fibrous residuals, especially C1, was helpful in reducing the hydraulic conductivity of sand flowable slurry.
Thank you very much for your interest.
Aabhar Tamaro, Afcharisto Poly, Arigatou Gozaimasu, Grazie Molte, Maraming Salamat, Merci Beaucoup, Muchas Gracias, Muito Obrigado, Dziekuje, Salamat, Shukriya, Spasibo, Thank you, Toda Raba.