Geography 120 – Our Physical Environment / Spring 2019

DRAFT

CLASS LOCATION & TIME:
SEC 201 (ONLINE; no mandatory fieldtrip)

INSTRUCTOR INFORMATION:
Dr. Woonsup Choi
Office: 496 Bolton Hall
Phone: 229-2671
Email: choiw@uwm.edu (the best way to reach me for private matters. For non-private matters, post your questions on D2L-Discussions. Your emails will be responded to normally within 48 hours. I may not respond to emails that are supposed to be posted on Canvas)
Office hours: Tuesdays 15:00-16:00 or by appointment through the last week of instruction

COURSE DESCRIPTION AND OBJECTIVES:
GEOG 120 Our Physical Environment is an introductory physical geography course that covers the essentials of Earth’s physical processes occurring in the four spheres that make up the Earth system (atmosphere, hydrosphere, lithosphere, and biosphere). The processes occurring in each of these interconnected spheres are important because they form the physical environment in which we live. Example topics include Earth-sun relations, atmospheric temperature and precipitation, weather systems, global climates, creation and distribution of various landforms and soils. Particular emphasis will be given to the energy that drives all the processes and human impacts on the processes.

GEOG 120 is a 3-credit natural science course with required labs and a mandatory field trip. This course is listed as a General Education Requirements <GER> course with the following learning goals:

1) You will have gained basic understanding of major concepts in physical geography and their relationship with related natural science fields
 a. This learning goal meets the UWM GER criteria of “Understand and apply the major concepts of a natural science discipline, including its breadth and its relationship to other disciplines”
 b. This learning goal will be assessed by an assignment that requires students to calculate radiative energy for a variety of locations. This assignment requires understanding of concepts in physics such as energy and radiation. The concept is applied to diverse geographic locations, and students are expected to understand the similarities and differences of radiative energy across the locations and how they are related to the climate of the locations.
2) You will understand how to interpret and analyze environmental data and apply them for problem-solving
 a. This learning goal meets the UWM GER criteria of “Demonstrate an understanding of the process of generating and testing data, and apply this knowledge to the solution of problems”
 b. This learning goal meets the UW System Shared Learning Goals of “Critical and Creative Thinking Skills including inquiry, problem solving, and higher-order qualitative and quantitative reasoning”
 c. This learning goal will be assessed by an assignment that requires students to generate temperature data in terms of mean, variability, and gradient for different parts of the country.

STUDY MATERIALS AND RESOURCES:
- Required textbook: find at uwm.ecampus.com.
- Canvas Course Web site: Go to https://uwm.edu/canvas/, log in with your panther account and select [Our Physical Environment Spring 2019]. In this course, Canvas will be used mainly for submitting quizzes and assignments, keeping track of your grades, providing general course information and managing discussions. Please post any questions or comments about course contents on Canvas-Discussions. Check Canvas often for your success in the course. You are encouraged to respond to other students’ post.
- Panther Academic Support Services: tutoring center for undergraduates (http://www4.uwm.edu/pass/). However, do not hesitate to contact your Instructor first for any questions you have about lectures or assignments.

COURSE REQUIREMENTS:
- Learning modules: The course consists of eight learning modules. Each learning module has its own topic, learning objectives, textbook chapters, and activities (reading, quiz, and assignment). I will provide instruction for all the modules at the beginning of the course. Make sure to refer to the instruction for each module frequently. You may start any time but have to finish reading, quiz, and assignment of each module by each module’s due date shown in the timetable. Each module ends at 23:59 of the due date and will be graded thereafter.
 - Reading: You have to read the assigned textbook chapters. I will post key terms you have to understand in each module prior to the beginning of the module on Canvas. The key terms are most important terms; not all terms you need to know.
 - Quiz: After reading textbook chapters, you will take a quiz on Canvas that will be graded based on the number of correct answers. There are eight quizzes and the lowest quiz score will be dropped from calculating the final grade.
 - Assignment: There will be eight assignments you have to complete and return to me. They can be submitted only on Canvas as digital files (from scanning, digital camera, saving as PDF or WORD, etc.). The lowest assignment score will be dropped from calculating the final grade.
 - Discussion: Course-related questions must be posted on Canvas-Discussions unless they are private. Students are strongly encouraged to respond to other students’ post. I will monitor the comments and respond if necessary. In each
module I will select a couple of best discussion posts and will give **extra credits**. The selection is based on the demonstrated understanding of the topic.

- **Examinations**: Exams are non-cumulative and will cover the chapters as indicated by Instructor. Exams will end on **Tuesday, 10th and Saturday, 21st of July**. Exams will take an hour or less but will close at 23:59 of the exam date. You have to start the exam no later than 22:59 of the day to have a full hour.

EVALUATION:

Grades will be assigned on the basis of the total points accumulated from the course requirements throughout the term. For example, if you earned 161 points throughout the term after excluding the lowest quiz and assignment scores, your letter grade will be A-(161/180 = 89.4%).

<table>
<thead>
<tr>
<th>Maximum points</th>
<th>Grading scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td>A: over 90%, A−: over 88%</td>
</tr>
<tr>
<td></td>
<td>B+: over 83%, B: over 80%, B−: over 77%</td>
</tr>
<tr>
<td>Assignments</td>
<td>C+: over 73%, C: over 70%, C−: over 67%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>D+: over 63%, D: over 60%, D−: over 58%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>F: 58% or below</td>
</tr>
</tbody>
</table>

OTHER COURSE POLICIES:

- **Academic Integrity**: Plagiarism will not be tolerated in this class and students involved will receive a **zero** grade for the pertinent exam, quiz or assignment. Severer cases will be submitted to the University for further scrutiny. The scope and disciplines of student academic misconducts are specified in Chapter UWS 14 and UWM implementation provisions (Faculty Document 1686) and http://www4.uwm.edu/secu/SyllabusLinks.pdf. UWM Disciplinary Guidelines can be found in the Office of the Dean of Students, Mellencamp Hall, Rm118. It should be noted that **I will determine whether academic misconduct has occurred at my discretion and will not accept complaints from students**. Students who do not agree with my judgment should take the case directly to a relevant College or University office.

- **Finality of Grade**: All grades, once released on D2L or PAWS, are final except in cases of clerical error.

- **Special Accommodation**: Any student who feels he or she may need an accommodation based on the impact of disability, religion, or other civic duty should contact Instructor privately as early as possible to discuss his or her specific needs. The student notification will be kept confidential.

- **Other Notice**:
 - Late submissions will result in 20% discount, unless otherwise specified for each item. No late submissions will be accepted after seven full days from the deadline without prearrangement. No technical problems may be used as an excuse for a late submission. Nothing will be accepted after Exam 2 is over.
 - Make-ups will be allowed at the discretion of Instructor when a pre-approval has been obtained or in case of emergency with written proof.
- Other unspecified matters will be handled according to the University policies listed on http://uwm.edu/secu/wp-content/uploads/sites/122/2016/12/Syllabus-Links.pdf
- If you are having any trouble in class, please see Instructor as soon as possible

Class Schedule (Subject to Minor Change)

<table>
<thead>
<tr>
<th></th>
<th>Ends</th>
<th>Topic</th>
<th>Learning Objectives (details in the module instruction)</th>
<th>Textbook chapters</th>
</tr>
</thead>
</table>
| 1 | 1 Feb Fri | Earth’s shape and relation with the sun | - Understand the shape of the Earth
- Define locations on the Earth
- Understand solar time and time zones | 0 |
| 2 | 8 Feb Fri | Energy and temperature | - Understand input and output of energy in the Earth
- Understand the relation between energy and Earth’s temperature
- Explain the temperature variation on the Earth
- Define air mass | 1, 2 |
| 3 | 22 Feb Fri | Movement of air and water | - Understand the three states of water
- Calculate humidity
- Understand how air and water moves in the atmosphere
- Define air mass
- Understand midlatitude cyclones | 3, 4 |
| 4 | 8 Mar Fri | Weather and climate | - Understand the difference between weather and climate
- Explain the variation of climate on the Earth
- Explain the causes of past and present climate changes | 6, 7 |
| 5 | 27 Mar Wed | Modules 1-4 | - Define rocks and minerals
- Understand the internal structure of the Earth
- Understand landforms made by Earth’s internal forces | |
| 6 | 29 Mar Fri | Inside the Earth | - Define rocks and minerals
- Understand the internal structure of the Earth
- Understand landforms made by Earth's internal forces | 8 |
| 7 | 12 Apr Fri | Landforms | - Understand various processes and external forces making landforms | 5, 9, 10 |
| 8 | 26 Apr Fri | Glacier and the Ice Age | - Understand landforms left by glaciers
- Understand global climate change and the Ice Age | 12 |
| 9 | 9 May Thu | Soils and life | - Explain the global distribution of soils
- Define net primary production | 13, 14 |
| 10| 15 May Wed | Modules 5-8 | | |
SUGGESTED EMAIL FORMAT

- Have the subject start with [Geog 120]
- Make sure who you are writing to
- Put your name at the end

Don’t email like this

I need to ask if you would have some extra time available to go over stuff from class every week, I understand the concepts, but I’m probably not getting what you want me to understand from the material, I’ll see you on Thursday to further talk about this.