Wisconsin Statewide Model

Outline of a Proposed Approach

presented by
Kimon Proussaloglou
Cambridge Systematics, Inc.

January 12, 2004

Project Team

- Wisconsin DOT
 - Doug Dalton, Project Manager
 - Don Uelmen, David Cipra, and Al Stanek
- HNTB
 - Derek Hungness, Chris Johnson, and Ken Kinney
- Cambridge Systematics
 - Yasasvi Popuri, Dan Beagan, Krishnan Kasturirangan, Julie Colby, Chris Kopp, and Dan Tempesta
Project Objectives

- Decision-making support to the Long Range Plan
 - Policy-sensitive approach
 - Multimodal evaluation framework
 - Methods consistent with urban MPO models

- Passenger model to address:
 - Current and future flows of passengers
 - Diversion among routes and across modes

- Freight model to address:
 - Intercity commodity flows
 - Forecasts of intercity truck traffic

Policy-Sensitive Approach

- A practical decision-support tool
- Consistency in data sources and input assumptions

- Corridor-level versus statewide evaluations
 - Highway capacity expansion
 - Level of service improvements
 - Diversion among existing facilities
 - Corridor 2020 backbone
 - Intercity corridors
 - Key metropolitan corridors

- Diversion to improved or new intercity modes
Passenger Model – A “Best Practice” Approach

- Tour- versus trip-based model
- Trip rates by market segment
- Destination choice model
- Disaggregate mode choice model
- Separate model for “long trips”
- Stated preference mode choice model

Key Data Sources

- National Household Transportation Survey (NHTS) - Add-on sample for Wisconsin:
 - Household (N=17,600),
 - Person (N=41,000),
 - Vehicle (N=38,000),
 - Daily Trips (N=164,000), and
 - Long Distance Trips (44,000).
- Journey-to-Work data (CTPP)
- US Census, Department of Workforce Development (DWD), Department of Administration (DOA), and Woods and Poole
- Commodity flow data (TRANSEARCH)
Model Integration with Urban Areas

- Existing condition of urban area models
 - Major metropolitan areas
 - Smaller urban areas in the state

- Updates of smaller urban area models

- Consistency in travel demand forecasts
 - Adopt best practical approach to model integration
 - Ensure network and socio-economic data are consistent
 - Develop urban network and zonal overlays
 - Use “external station” trip data from statewide model as input to urban models

Preliminary Statewide Network

- Network: 125,000 links based on WISLR
 - Major rural collectors or higher
 - Minor urban arterials or higher
 - Merging of STHN attribute data
 - Interface with TAFIS/Meta-manager
Preliminary Statewide Zone System

- 1,645 CVT zones (City-Village-Township)
 - 1,215 rural zones
 - 430 urban zones
 - Consistency with inputs from
 - Census,
 - DWD and DOA, and
 - O-D survey data

Model Functionality

- Practical considerations
- User-defined “what if” scenarios
- Modular approach to model building
- Future model updates
 - Data updates
 - Model enhancements
- Practical, user-friendly analysis tool
Freight Model – A Commodity Flow Approach

- Four-step freight model with Wisconsin parameters
- Model input datasets in required formats
 - Zonal socio-economic data
 - Special terminal generators
- Model outputs from base and forecast years
 - Tons produced and attracted by commodity
 - Origin-Destination tables of tons by commodity by mode
 - Origin-Destination table of daily truck trips
 - Assigned freight truck volumes by commodity
 - Assigned tonnage on other modal networks

Structure of the Freight Model

- Generation
- Total Tons
- Distribution
- Tons by O-D
- Mode Choice
- O-D Tons by Mode
- Network Assignment
- O-D Tons by Mode and Route
Overview of Freight Model

- **TRANSEARCH 2001**
 - 51 BEA ZONES
 - 238 STCC-3 COMMODITIES

- **WI STATEWIDE MODEL**
 - 132 ZONES
 - 72 WI COUNTIES
 - 60 REST OF US, CANADA, MEXICO
 - 25 COMMODITY GROUPS
 - STCC-2 GROUPINGS
 - TONNAGES BY MODE

Freight Model Zone System

[Map of the United States with zones colored in different colors.]
Summary

- A multimodal approach to intercity travel
- A “best practice” approach to passenger modeling
- A commodity-flow approach to statewide freight flows
- Development of a practical, user-friendly analysis tool
- Modular approach allows future expansion of model system
- Approach design with linkages to existing management systems

Model Components

- 2001 NHTS Survey
- Trip Generation
- Total Trips
- Distribution/Destination
- Trips by O-D
- Mode Choice
- O-D Trips by Mode
- Network Assignment
- O-D Trips by Mode and Route
- Statewide Network