The Trouble with Intercity Travel
Demand Models

Eric J. Miller, Ph.D.
Bahen-Tanenbaum Professor, Dept. of Civil Engineering
Director, Joint Program in Transportation
University of Toronto

2004 Annual Meeting
Transportation Research Board
Washington, D.C.
January, 2004

Presentation Outline

- Definitions
- Characteristics of a typical intercity model
- Issues
- Research needs
Definitions

“Intercity” models generally are applied within a reasonably well defined travel corridor.

A major policy application of these models almost always involves analysis of the introduction of a new mode of travel (and/or significant upgrades of existing services).

Lack of progress in intercity models

- Relatively few intercity travel corridors
- Lack of “natural home” for modeling efforts
 - Lack of institutional memory
 - Reinvention of wheels
- Private/public sector roles
- Lack of data
- Lack of investment in model development
Typical Model Structure

- Pop, Emp, etc.
- Transport Network
- Total Demand \((T_{ij})\)
- Mode Choice \((P_{mij})\)
- O-D Trips by Mode

\[T_{ij} = \alpha \left(\prod_k S_{ik}^{\beta_k} \right) \left(\prod_k S_{jk}^{\gamma_k} \right) \text{LOS}_{ij}^{\phi} \]

\[P_{mij} = \exp(V_{mij}) / \sum_{m'} \exp(V_{m'ij}) \]

(or nested logit)

Total (Direct) Demand Model

- “Unconstrained” function of socio-economics:
 \[(T_{ij} / E_t) = \alpha (E_i^{\beta-1})(E_j^{\gamma}) \text{LOS}_{ij}^{\phi} \]
 - Constant elasticity (Cobb-Douglas)
 - Very aggregate, limited explanatory variables
 - “Feedback” to urban activity levels?
 - Nature of induced demand term
 - Induced demand on “old” modes:
 \[I_{ij} = \alpha (E_i^{\beta})(E_j^{\gamma})(\text{LOS}_{ijr}^{\phi} - \text{LOS}_{ijb}^{\phi}) \]
 \[I_{ij} = P_{mij}I_{ij} \]
Modeling Intercity Mode Choice

\[
P_{m|r} = \frac{e^{V_{m|r}/\mu}}{\sum_{m'} e^{V_{m'|r}/\mu}}
\]

\[
I_r = \log \left(\sum_{m'} e^{V_{m'|r}/\mu} \right)
\]

\[
P_a = \frac{e^{V_a}}{e^{V_a} + \mu I_r}
\]

\[
P_r = 1 - P_a
\]

Mode Choice Modeling Issues

- Selection of nesting structure
- Market segmentation
- Limited explanatory variables
 - Socio-economics
 - Level of service
- Common-carrier access-egress ***
- Modeling new modes ***
Common Carrier Access-Egress

- Access-egress typically a significant component of total travel time; can often nullify speed advantage of line-haul mode
- Proper treatment of access/egress sub-mode choice critical, especially at “non-home” end where one’s personal car is not available

New Travel Mode

- Revealed preference (RP) data does not exist for a new mode of travel
- Must use stated preference (SP) survey methods to “observe” new mode choices
- Developing mode “constant” or “bias” terms particularly challenging

\[V_{\text{new}} = \alpha_{\text{new}} + \beta X_{\text{new}} \]

\[\alpha_{\text{new}} = ??? \]
Data Collection Issues

- Choice-based sampling typically required
 - Access to private-sector common carrier passengers often difficult to obtain
 - Intercepting intercity auto trips difficult
 - Sampling frames difficult to define adequately
- SP-based surveys challenging
 - Expensive
 - Complicated
 - Small sample sizes
 - Sample selection / sampling frame issues
 - Bias potential when describing new modes
 - “Last trip”

Aggregation Issues

- Intercity models are typically extremely aggregate relative to best-practice urban models; aggregation issues exist wrt:
 - Space (large zones)
 - Time (24-hour models typical)
 - Market segments (very broad categories used)
 - Socio-economic effects
 - Modes (esp. access/egress representations)
Selected Other Issues

- Highway congestion
- Through traffic
- Non-resident travel
-

Some Suggestions

- Improve data collection methods
 - Better treatment of “new modes” within SP surveys
- Improve model disaggregation
 - More detailed representation wrt space, time, trip purposes, traveller socio-economics
- Improve treatment of access/egress modes
 - Clearly addressable with conventional nested model
- Improve model structure
 - Theoretical consistent treatment of trip “generation/distribution”
 - Improved market segmentation methods
- Improve model specification
 - Level of service, socio-economics, “travel generators”
Suggestions, cont’d

- Need for basic research to develop & test new methods
- Need for new data collection
- Need for new model designs

Outside the context of specific projects

Role of statewide models to replace / complement / incorporate intercity models ????