University Safety and Assurances

Personal Protective Equipment: Gloves

General Information

Some of the hazards that threaten hand safety are skin absorption of harmful substances, chemical hazards, such as caustic material, solvents or cutting oils, cuts or lacerations; punctures; chemical burns; thermal burns; harmful temperature extremes; bacteriological, blood or other infectious materials; and musculoskeletal disorders.

Preventing Hand Injuries

Example of Choosing Wrong Glove

When substitution of less hazardous materials and work practice controls fails to eliminate the risk of injury to hands, protective gloves are the primary means of protection.

Protective equipment includes gloves, hand pads, tapes and mitts. There are many types of gloves available and the challenge is to find the right glove for the job. The glove on the right illustrates what can happen when a particular chemical is incompatible with the glove being worn.

  • Chemical Resistant Gloves:
    • Butyl: High resistance to gas or water vapors. Also resists common acids and alcohols.

    • Hot-Mill or Aluminized Gloves: Offer reflective and insulating protection. Generally used for welding, furnace and foundry work.
    • Latex: Provide protection from most aqueous solutions of acids, alkalis, salts and ketones. They resist abrasions during grinding, sandblasting and polishing. These general-purpose gloves are pliable and comfortable. Used for common industrial applications, food processing, maintenance, construction and lab work.
    • Natural Rubber: Liquid proof protection against acids, caustics and dye stuffs.
    • Neoprene: Provides protection against hydraulic fluids, gasoline, alcohols, organic acids and alkalis. They offer good pliability and finger dexterity, high density, tensive strength plus high tear resistance.
    • Neoprene Latex: Protection against detergents, salts, acids and caustic solutions.
    • Nitrile/Natural Rubber: Provide protection from chlorinated solvents and are intended for jobs requiring dexterity and sensitivity. Nitrile/Rubber blend resists abrasions, cuts, tears and punctures.
    • N-DEX Gloves: This nitrile glove provides splash and spill protection against a wide variety of chemicals, although it is not intended for extended immersion activities. It is available in low-power and powder-free options.
    • Polyvinyl Alcohol (PVA) Gloves: Resist strong solvents such as chlorinated and aromatic solvents. This material is water soluble (polyvinyl alcohol) and cannot be used in water or water-based solutions.
    • Polyvinyl Chloride (PVC) Gloves: Good for handling materials coated or immersed in grease, oil, acids or caustics. Resists abrasion. Can be purchased lined or unlined depending on dexterity requirements.
    • Silver Shield Gloves: Protection against a wide range of solvents, acids and bases. This lightweight laminate is flexible, but not form-fitting, which affects user dexterity.
    • Vinyl: Provides resistance to a variety or irritants.
    • Viton: Provides resistance to PCBs, chlorinated and aromatic solvents, gas and water vapors. This glove material can be used in water-based solutions.
  • Cotton or Canvas Gloves: General work gloves for parts handling, general maintenance. Provide abrasion resistance.
  • Leather Gloves: Mild heat resistance and good abrasion resistance.
  • Metal-Mesh, Kevlar, or Other Cut-Resistant Gloves: Protect against cuts and abrasions. Used for glass handling, metal fabrication, food processing applications, and handling other sharp tools or objects.
  • Shock-Absorbing Gloves: Protect against repetitive pushing and pounding or extended contact and help lessen the effects of constant vibration.

When ordering gloves, be sure to order the proper size. Tight-fitting gloves can cause fatigue and be more vulnerable to tears. They can also cause increased perspiration. Loose-fitting gloves impair dexterity and are cumbersome and even hazardous around laboratory equipment. Rings with prongs and long fingernails can tear gloves made of thinner materials.

To select the proper glove when working with chemicals:

  1. Determine what chemical(s) will be handled. Review the Material Safety Data Sheet (MSDS)
  2. Consider the degree of dexterity, gripping ability and ruggedness needed for the tasks to be performed.
  3. Review the chemical compatibility chart to determine breakthrough performance to determine the suitability of a glove for a specific application.

Visually inspect gloves each time they are worn and change them if they are cracked, peeling, torn, punctured or otherwise deteriorating. If there is any doubt about the integrity of the glove material, it should be discarded. Gloves can be leak-tested for defects difficult to see with the naked eye by trapping air in the glove, immersing it in a soap solution and squeezing it to pressurize.

Perspiration inside gloves softens the skin, making it more vulnerable to chemicals. This can be minimized by limiting the time gloves are worn (whenever possible), alternating pairs or using thin cotton gloves as replaceable inner liners. Some glove users experience a rash or an allergic reaction from the powdered coating inside certain gloves. Switching to a non-powdered glove should eliminate most of these problems. If irritation or rashes appear, try another type of glove.

Glove Compatibility Charts:

Other Resources: