Transportation Sustainability Issues

http://www4.uwm.edu/cuts/ite09.pdf

Edward Beimborn
Center for Urban Transportation Studies
University of Wisconsin-Milwaukee, November 2009

Definitions

- Sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs. (UN World Commission on Economic Development, 1987)
- Resources renew themselves at the same rate or faster than they are used.
- Example: sustainable forest: It supplies fuel, lumber, natural communities and food at a rate less than the rate they are consumed – forever.
What sustainability really means

- A system that is not sustainable is a Ponzi scheme – borrow resources from the future to pay for the present
- A system that is not sustainable will eventually collapse, the bubble pops
- The only questions are
 - When and how the collapse will occur,
 - What happens during the collapse
 - What needs to be done to cushion the collapse

Sustainability

- Requires a change from thinking from growth to understanding system dynamics and equilibrium http://dieoff.org/page25.htm
What resources are we concerned about in transportation?

- In a sustainable system, resources need to renew themselves at the same rate or faster than they are used.
 - Money
 - People
 - Materials
 - Energy
 - Air, water and climate

Financial sustainability

- Rising costs
 - Materials and labor costs
 - Costs of mega-projects
 - Bonding
- Declining or flat revenues,
 - VMT growth is slowing,
 - More efficient vehicles
 - Diversion of transportation funds for other (worthy) purposes
- Public and political resistance to any tax or fee increases
- Earmarking.
People (sustainability of work force)

- Universities are reluctant to hire faculty unless there are assurances of research funding, (probably) from state sources.
 - Earmarking and cost share requirements limits other opportunities
 - Limited university resources (new faculty hires) especially in traffic engineering, public transit, highway design.
- Excessive outsourcing of engineering services by public agencies can lead to lack of permanent expertise to oversee projects
- Inadequate preparation in mathematics and sciences by entering students at universities, especially from urban schools, reduced summer job opportunities
- Undergraduates in the U.S. are reluctant to enter graduate school

Materials sustainability

- Need to expand and enhance materials reuse and recycling
- Lack of maintenance leads to higher costs in the future. Good asset management needed.
- Local roads that use property taxes for support are seriously under funded
- Need a ‘LEED certification’ program for transportation – What elements of design and construction give the best long term fit with the environment?
Energy (Petroleum) sustainability

- To be sustainable, oil supplies would need to be discovered and developed (or replaced) faster than they are being used, this has not been the case since about 1980.
- Well to wheel requirements: Net energy = energy produced – energy needed to produce the energy, newer sources require more energy to produce the energy
- System collapse is inevitable, probably in 10-30 years
- When it happens depends on primarily rate of increase in global demand for petroleum.

World Conventional Oil Production & Discoveries

The Growing Gap

- Past Discovery
- Future Discovery
- Production

OIL DEPLETION - THE HEART OF THE MATTER, C.J.Campbell, The Association for the Study of Peak Oil and Gas
Some numbers

- World demand – 30 Billion barrels/yr expected to increase to 50 BB/yr
- U.S. demand – 7.5 Billion barrels/yr., about 5 Billion barrels/yr. imported
- US. Reserves – about 21 billion barrels from all sources – off shore, AWNR (4 Bbl), etc. global reserves 1 Trillion barrels?
- Remaining sources require greater energy to extract. Net energy?

Supply = Area under the curve
Campbell’s prediction "the end of cheap oil"
When demand exceeds supply ...

U.S. DOE viewpoint,
source: http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oil%20supply'
Petroleum Collapse - worst case

- Collapse of petroleum system could (will) have severe consequences
 - Investor speculation leading to wide price swings
 - Global economic recession/depression
 - Severe inflation
 - Removal of environmental controls over remaining resources
 - Most of the world, including the U.S. will be highly dependant on sources from a few, mostly unfriendly or hostile foreign locations.
 - Transfer of wealth to countries with remaining resources
 - Political/military conflict over remaining resources
 - Rise of autocratic governments
 - Increasing poverty in third world countries

Source: http://www.eia.doe.gov/emeu/cabs/chron.html
Recent price trends

Sources of supply

- Remaining sources require more energy input and are more difficult to process than in the past
- Many producing countries have moved past their peak production and are in a period of decline and are becoming net importers. (Oman, Indonesia, China, UK, Iran?)
- Exceptions are in the middle east (Saudi Arabia, Iraq, Kuwait, Abu Daubi)
- No matter when we reach the peak, most of the world, including the U.S. will be highly dependent on sources from a few mostly unfriendly, hostile foreign locations.
Date of peak,
source http://www.hubbertpeak.com/campbell/

<table>
<thead>
<tr>
<th>Country</th>
<th>Date of Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iraq</td>
<td>1940</td>
</tr>
<tr>
<td>Abu Dhabi</td>
<td>1950</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1960</td>
</tr>
<tr>
<td>Algeria</td>
<td>1970</td>
</tr>
<tr>
<td>China</td>
<td>1980</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1990</td>
</tr>
<tr>
<td>Mexico</td>
<td>2000</td>
</tr>
<tr>
<td>Norway</td>
<td>2010</td>
</tr>
<tr>
<td>UK</td>
<td>2020</td>
</tr>
<tr>
<td>Russia</td>
<td>2030</td>
</tr>
<tr>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Kuwait</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td></td>
</tr>
<tr>
<td>Libya</td>
<td></td>
</tr>
</tbody>
</table>

Remaining reserves and potential new finds, (Billions of Barrels)

Estimated Reserves,
Source http://www.hubbertpeak.com/campbell/
Where does the Money go?
(Emirates Palace Hotel and Conference Center, Abu Dhabi)

More bad news

- If additional supply is found or developed, it can result in a delay of the collapse, but the magnitude of the collapse will be greater.
- Remaining sources require more energy input and are more difficult to process and transport than in the past.
- Alternate fuels require petroleum input to acquire and transport. (e.g. coal)
- Unstable prices discourage or delay investment in alternatives (alternative sources, fuels, technology, etc)
Even more bad news

- More efficient vehicles, price pressures and general conservation can delay the problem, but are not enough. “You can only turn off the lights once”

- Can Technology and Alternative Fuels solve the problems?
 - Possibly, in the long run, but some will take a long lead time to happen
 - Technology development - 6-15 years
 - Infrastructure deployment -10-15 years
 - Market penetration occurs along with above
 - Fleet turnover – 12 years
 - Total 20-40 years for full effect to be felt

The four stages of grief

- **Denial** – “It won’t happen”:
 - A question of risk, the prudent thing to do is prepare for the worst, hope for the best,
 - Similar to preparation of a disaster plan
 - “If it could happen, it will happen” So, what strategies should be used when it does happen?
 - Most actions to lead towards sustainability are good things to do anyways
- **Anger** – “Blame someone else”:
 - Useless, the problems don’t go away
- **Acceptance** – “We are doomed”
- **Negotiation**
 - what can we do to create a momentum to move in a different direction:
What to do? Financial sustainability

• Learn to do more with less - fix it first?
• Invest in preventative maintenance
• Improved operations of existing facilities.
• Spread the message, if the experts don’t, who will?
• Explore alternative funding sources – tolls, congestion pricing,

The future?
What to do? People

- Support your local university
 - Get to know the dean of engineering
 - Understand the changed role of research at universities
- Support and participate in mentoring programs
- Support summer jobs for students

What to do? Materials/planning, design & operations

- Think sustainability on all phases of project planning, design, construction and operations
- Many actions are well known for the preparation and operation of transportation services
 - Provide transportation choices – freight, transit, pedestrian, bicycle, ride sharing, pricing and policy.
 - Design for maintenance and flexibility
 - Consider the role of transportation in land use
- Move towards LEED certification for transportation projects.
What to do: Energy - 1

- The most difficult issue, especially in the short term
- Need to provide time for the implementation and impact of long term actions
- Beyond the realm of transportation engineers
- Contingency planning is essential
 - Question is: How to allocate scarce resources?
 - Must plan for the crisis in advance because there will be no time to plan for it when it does actually happen.
 - Goal: To increase the ability to respond to an energy shortfall through an adjustment of demand without causing severe problems for households, or the economy.

What to do? Energy -2

- No easy long term solution, a combination of thousands of actions
 - Price increases
 - Conservation
 - Alternative Fuels
 - Increased efficiency
 - New sources
 - Economic adjustments
Conclusions
(presentation posted @http://www4.uwm.edu/cuts/ite09.pdf)

- The current system is not sustainable
- We need to understand system dynamics and equilibrium
- Transportation finance will be radically affected by future revenue declines, cost increases and other factors
- Education of future professionals in transportation is in jeopardy.
- There are many know actions that can improve the sustainability of transportation facilities and operations
- Energy issues will dominate the future of transportation and the economy
- Failure to act early will lead to more severe consequences
- Contingency planning is essential
- To do project planning, development or operations without a thorough knowledge of future situations is a waste of time
- Become knowledgeable about the issue

And Finally,

- For a good time see: http://www4.uwm.edu/cuts/signs/
Web sites

- http://www.uwm.edu/Dept/CUTS/2050/energy05.pdf
 #search='oil%20supply'

Background: the four stages of grief

- Denial: It is not really happening, ignore it and it will go away
- Anger: It is someone else’s fault, someone else has to deal with it.
- Negotiation: Maybe we can change a just a few things
- Acceptance: We are doomed